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QUANTUM MECHANICS AS A THECRY
OF RELATIVISTIC BROWNIAN MOTION

Yu. A. Rylov1

ABSTRACT. It is shown that nonrelativistic guantum mecha-
nics can be discussed ag a variant of the relativistic
statistical theory which describes the random motion of a
classical particle. The relativity of the theory consizts
of the fact that a relativistic concept of the particle's
state is used in describing the particle's behavior. This
situation is fundamental because the statistics are the cal-
culation of states and the result depends on what is desig-
nated a state.

The magnificent structure of contemporary guantum mechanics stands as an /5%

isoclated phenomenon. A comnection between gquantum and classical mechanics is
accomplished only with the help of the correspondence principle. It seems that

quantum mechanics represents a fundamentally different theory [1.,2]

not be understood from the standpoint of classical mechanics. Attempts of various
authors EB-le to understand guantum mechanics from the standpoint of classical
mechanics have not fully achieved the goale2 Although this sounds paradoxical
the reason for this consists, in our opinion, of the fact that they have attemp-
ted to understand nonrelaﬁivistié quantum mechanics from the standpoint of

nonrelativistic classical mechanics.

We will show in the present communication that quantum mechanics repy
a variant of the relativistic theory of Brownian motion. The difference from

the approach of the other authors consists of the fact that we discuss no

tivistic quantum mechanics from the point of view of relativistic classical

[

mechanics. With this approach no new principles are required to understand the

1. Institute for Space Research, USSR Academy of Sciences, Moscow.

2. The reference [13] is an exception. Here success is achieved,
as it seems to us, by not taking clear account of what we call the relativistic
concept of a state.

*Numbers in the margin indicate pagination in the foreign text.
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quantum mechanics of a single particle. In particular; such specifically

tum principles as the uncertainty principle and the correspondence
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can be understood from the classical viewpoint. The key to such a
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is a relat c concept of the state of a system.

1. The Concept of a State

In nonrelati

the set of quantities specified at a certain instant and possess
that being specified at one time they permit the determination o
(i.e., the state) at all succeeding times. The equations of motion

cribe the evolution of the state in time, serve for this purpose. The state

described for a system consisting of particles by specifying the coordinates

momenta at a specified time; for a system consisting of a liquid or a

el

state is determined by specifying the velocities of all the elements of

the density, temperature, and so forth. The state and equations of motion
describe the temporal evolution of the state represent two necesseary elements of
any nonrelativistic physical theory. T@e connection between these two elements
is purely superficial.

As Tollows from the definition, the state of a system is specified at a

specified time. But in relativistic theory simultaneity is relative,

events are to be considered simultaneous and which not depends mainly on the

choice of a system of coordinates, i.e.,on our arbitrariness.

the state of a physical system is known to us .n the system of coordinates, K

o~

then we can determine the state in the system of cocrdinates K', which is moving

th respect to the system of cocordinates K, only in that case where the equations

l’"“

w

bl
of motion are known and we know how to sclve them. Actually, the st in the

system of coordinates K is specified on the hyperplane t= -const in the four-
dimensional events space ‘but the state is specified in the system of coordinates
ferent hyperplane t' = const, and the conversion of the state from

bij
one hyperplane to the other is possible only in the case in which the equaticons

of motion *ze known. Thus in the relativistic theory the state and the equaticns
of motion are closely connécted. Because of the absence of absolute simultaneity

in the relativistic theory it secems more consistent to define the state of &

system not at a given time but at once in the entire events space. The concept




of a state includes within it the law of temporal evolution of the physical
system. The equations of motion now take on ancother meaning. We will

them as certain limitations which are imposed on

RN IR o £
the possibl

states not all but only those which satisfy the equations

(0]

We will call them the coupling equations. Essentially these are the sanme
motion, but now they describe not the evolution of the state in time but are
limitations which isclate the pﬁy51caliy—nern*ss¢oxe states from the

The situation recalls statics, where there is no talk about the

the states but the states are divided into two classes: permissible

and inadmissible {(nonequilibrium). We will thus talk about "statics in events

The ideas presented above can be concisely formulated in the follo ¢ /8

manner. In nonrelativistic theory the unique division into states and

of metion in the de SCLlpﬁlOn of pnys;cal phenomena corresponds in the n

relativistic theory, where the division of events space intoc space and
hed

is ambiguous and axaztrary, the division of the description of physical phenomena

!

into states and equations of motion is also ambigucus and arbitrary.

of a physical system definednat once in the entire events space correspon

better to a unique events space, and the equations of moticn enter as

It can be shown that for its existence it makes_no difference
¢ .

not the division of the description of the fhysical system into s
7

of motion is carried out and just how this division is

this has no meaning for the dynamics, but it is of signific

tics, since the statistics is understood by the calculation

stics precise

Pt

M
is significant for the stat 1y v

Statistics wﬁich correspond to different divisions of a descri
system into states and equations of motion lead, generally speaking, to different
results.

We will describe the state of a single particle, specifying
in the entire evenis space, i.e., specifying the four functions q = ¢ (T},

1 =0, 1, 2, and 3, where T is some parameter along the world line. Specifying /9

the momenta is not necessary because as soon as the mass m of the particle and its

state, i.e., the world line, are known, the momenta ps; are determined by the re-
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In (1.1) and everywhere in what follows the Latin indices run through the values
0, 1, 2, and 3, and the Greek indices run through the values 1, 2, and 3.

Summation is carried out for repeated indices.

2. Quantum ensemble

We will assume that the state of a particle, i.e., its world

‘random quantity. We assume for simplicity that the world line cannot reverse

backwards in time, i.e., dq /dT always maintains its sign. We will introduce

the concept of the state density to describe random states., We will discuss
. o1 e - . . < .
at the point g of events the infinitely small three-dimensiocnal area As. .,

b=t
ot
th

L3 evident that the number dN of world lines which cross the area dS._ is
g

proportional to the size of the area, i.e., ; Z;O
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where J 1s the proportionality coefficient. The vector J
the density of world lines in the neighborhood of the point

definition the state density at the point g. The fact that

s associated with the 1
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a vector should not disturb us. This
dimensional lines are the object of the statistics and not points

atistics. Actually, in nonrelativistic statistics the
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system is a point in phase space, but the state density is a scalar funciion
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It follows from the definition of j <that the temporal comporent j  repre.
sents the average density of the particles, and the spatial components ¥
represent the average flux density of the particles.

Thus the principal difference between nonrelativistic statis

tivistic statistics consists of the fact that in the former the

is always a scalar and in the latter it is not necessaril

[0}

for example, a vector. Just the fact that the state density is a vector coffers
us the possibility of presenting quantum mechanics as a relativistic theory of
Brownian motion. Furthermore, we will discuss only the nonrelativistic case

adepting only the relativistic concept of the state density from relativiiy.
s

We will discuss the statistical ensemble of world lines. We will assume
that the nonrelativistic case occurs, i.e., the world lines deviate 1ittlie from
some constant direction in events space. If we select this directiocn along

the time axis, then
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The state of the ensemble is described by the state density j (q). This denctes

that we are discussing the statistical ensemble &s some determinable phvsical

. o . - . e
system whose state is described by the vector j .

-

To avoid misunderstanding we note the following. .Usually the concent of

a statistical ensemble is introduced when the motion of an individual particle

is indeterminate or the initial state of the particle is notably inaccurate.

The statistical ensemble represents a set of many similar systems which occur

/1



ty. The
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in various states and is described by the state densi

represents the state of the ensemble. In the nonrelativistic

density W represents a function specified in phase space and

sense that, being specified at a certain instant of time, W

Tined at any succeeding instant of time. In this sense the

can be discussed as some determinable physical system whose

the function W. Thus the statistical ensemble represents a

(U

with whose help one can describe indeterminable systems.

ducing the statistical ensemble is to reduce the indeterminable physical system
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4 different aspect occurs in the nonrelativistic case. W represents a
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nonnegative quantity, and upon imposing normalizatiocn Wdlcan be interpreted as

bability of detecting a particle in the element of phase volume d&l,
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his situation in combination with the fact that W is a state permitis one to sne

)

about a random Markov process and so forth

)

senerally speaking, the two indicated aspects of a statistical

.€., the state of the ensemble, being the state
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are independent,
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probability density.

It is important to us in the relativity case that the statistical ensemble

. ) k , ) . . . - o~

described by the vector j represents a determinable physical system. The fact
e oK . . .o - . e .

that jJ dSk can be interpreted as the probablility of detecting a particle ian the

3-space st is valid only as long as the world lines of the particles do not make

zigzags in time. For relativistic particles, where the creation and desitructicn

of pairs is possible, it is necessary to reject such an interpretation.

We postulate that in the nonrelativistic approximation (2.1) only the states
K , . . -
J of the ensemble are possible which satisfy the equations
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where we introduce the symbols

R e g
~ o [+ . 4
A A .
o ;j el 3 7 (o an
] 43 / / i’ Ve
J ) ¢ oA,
{ e
ey
ke ¥
{4 ;
T is Planck's constant and m is the mass of the particles which form the ensem-

ble. We will denote the statistical ensemble whose state is described by the

, . .o . . . "
vector j which satisfies the Eq. (2.2) as the quantum ensemble.

From the nonrelativistic point of view the four equations of (2.2)

sent the equations of motion of the ensemble and allow us to determine

- .y K ‘o . . . . ‘
the state J specified at some instant of time the state at any succeeding

instant of time. The equations are selected so that for certain assumpti

. . . o, . o
they would be equivalent to the Schrodinger equation for a free particl

The Eq.(2.2) are the vector analogue of the Einstein-Fokker-Planck

the motion of an ensemble of Brownian particles.- We will understand the Eg.(2.2)
as the nonrelativistic approximation to the equations for an ensemble of re

¥ &

¢ Brownian particles. The fact that relat
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ivistic concept of state density
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is Intrinsic gives us the possibility of presenting the Schrodinger equation

as the equation of motion of the statistical ensemble.

We will show [10] that if we introduce the notation

where v/ = v¥(q) is the average velocity of the particles of the ensemble at

the point ¢ and assume that the velocity has a potential / 1k
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Using (2.6) we write (2.7) in the form
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We integrate (2.8) One can w~*hout limiting t
trary function of the time which is deri

ed on the
since according to (2.5) © is defined only correc

tion of the time. We have
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We now multiply (2.6) by ifi exp (i9/R)/(2yp) and (2.9) by - p exp (i¢/7) and
add them. We obtai c
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where by U is denoted the quantity

/ < 5\

s (2,11,
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According to our definition of the ensemble of world lines, the quantity

represents the average number of world lines which intersect dS, . In the non-

relativistic case it is transformed into pdso = pdV because of (2.1) and under
the condition of normalization
o
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P pa v = (2.12)
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can be interpreted as the probability of detecting a particle in
dV. If the normalization condition (2.12) is fulfilled for some instant o

time, then because of the first equation of (2.2) it will be fulfilled for any

onal Principle for the Quantum Ensemble
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The Eq.(2.2) for a guantum ensemble can be derived from the variational

ne does the treatment in the form
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Here the vector j =1{j ,Jjc 0 = J represents the state densi

n

L. N - L . . o .
and j are the well-known functions of the variables 5., m 1

articles of the ensemble, and U is introduced as a Lagrangian

represents the energy incident on the particle. The cocrdinate
: . - i TN T s T ee & g g E

space are independent variables. The variables § = ( o S, 52
are subject to variation. If the gquantum ensemble is considere

and &_ represent the lLagrangian coordinates of the

1 27 3
ligquid, i.e., the set §_, gz, and §_ represents the "number' of
. L >
the ligquid. §O is the Lagrangian 'time coordinate. However it is fictiftious,
and L does not depend on §O. The variables £ . enter L through the
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We will verigy that the connection between the Lagrangian coordinates

€. of the quantum ensemble and the state density jk is given by the relation-

Fo

ships (3.3). It follows from (3.3) that

& 3 3 ~ Fl

M-I ;A ¢ 2 2

N ) doda” = s
i (:; ¢ i/ Q b hacs \3“:»‘/

i
(\a)

l.e., selecting the lagrangian coordinates €17 §9, and §3 so that d:l? ag,, ag.

i &t >
would represent the average number of particles iIn the volume, where the variables
= . . . e o < o . . - . .0
S, Vvary within the limits(Z) <SQ <E§ + dga, ¥ =1, 2, 3, we derive that J

iz the average density of the number of particles. Furthermore,
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It follows from (3.6) that j&¢ is the derivative of the density of the
s .. , L, o, .
number of particles multiplied by the average velocity ¥ = dg /dt. This
. . , O , . . L -
agrees with the concept of j  as the density of the flux of particles. To aveid

misunderstanding we note that the lagrangian coordinates §a describe not the

motion of the individual particles of the ensemble but the average motion of

o

the particles of the ensemble, similar to the situation in gas dynamics where

the Lagrangian coordinates describe the motion of a veolume element of the gas

e
e

which contains many molecules, i.e., they describe the average motion o
molecules of -the gas. Thus the motion of an individual molecule of the gas is
chaotic and does not correspond with this average motion.

Now it is easy to understand the meaning of the individual terms in the
Lagrangian (3.2). The first term represents the density of the kinetic energy
of the ensemble mpvgva/z. The second term represents the density o¢f the internal
{(potential) energy of the ensemble taken with the opposite éigno This energy
is associlated with the chaotic motion of the ensemble's particles. Evidently
this is not the total energy of chaotic motion but only that part of i
appears in the motion of the ensemble. The second term is proportional t¢ the
square of the gradient of the density p. This is understandable because the
effect of the chaotic motion on the ordered motion appears as the diffusion
which appears in the presence of a aensity gradient. This fact is well known
from the theory of Brownian motion. Finally, the last term represents the means

of introducing the symbol

o f:d; (3.7)
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the help of the Lagrangian multiplier p [14]. After introduc:

n of (3.7) the Lagrangian (3.2) contains only the variables

This simpli

ubject to variation and their first derivatives.

We derive the equations of the quantum ensemble, varying (2.1) with

to i, p, and §, and equating the variational derivatives to zeroc.
i

with respect to i gives the relation (3.7). Furthermore,
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i.e., the first equation of (2.2). Substituting 0p/0t from (3.15) into (3.13),
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this equation into (3.16), we obtain after transform
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ide the second equation of (2.2). Thus the Eg.(2.2)

The existence of the variational principle is very convenient in
nection, which permits the easy introduction of the concepts of ta
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momentum of the ensemble. We will calculate for this purpose the

3

energy-momentum tensor T with the help of the relation
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Here the variables §i9 L, and o, with respect to which the variatiocn is carrisd
out, are denocted by uy. The summation is carried out over all these variables.

-

Calculation gives
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for the components TO and Tn. Here‘JB are the covariant components of the vec-
K . . , R . . . . . . o o e
tor j , which are derived from j by dropping the indices with the help of the
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. . . o . . o o
etric tensor (1.2). We identify TO with the energy density of the quantum en-
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semble and TB with the momentum density. The energy E and the momentum Pﬁ of
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the ensemble are defined as integrals of the quantities TO and Tﬁz
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Similarly, one can define the density of the moment of the ensemble's
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M [15]. All the fields are scalar in our case, because the spin moment

the momentum is lacking. We have
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We will discuss the question of what the fhysical quantities introduced denote:
the energy, the momentum, and the moment of momentum as applied to the sta-
tistical ensemble. For brevity we will speak only about the energy., keeping
in mind the fact that everything stated about the energy is alsc valid for
other physical quantities.

From a formal point of view the state of the ensemble is defined by

, , ‘o Lk o KL Cos o
the set of gquantities §i, U, and p or by the vector j . If j is specified




k

at some instant of time, then we are able to calculate jl with Tl
Eq.(2.2) at another instant of time. "In short, the description of the statis-
tical enseéble from a formal peint of View is similar to -
terminable system, for example, a system consisting of a
canonical method exists for defining the energy and the other physical
for such a stem. The energy introduced by us is a funcitiocn of
state and is conserved in time, i.e., formally it can be discussed as
of a physical system, the so-called gquantum statistical ensemble.
As has already been stated, the description with the help of the statiz-
tical ensemble is a method for
systems. We will discuss, for example, a nonrelativistic Brownian

the instant of time t = the Brownian

O the position of

elocity are accurately known, then it is already impossible

e its on. The reason for this is
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Q0 to uniquely defin posi

on the rticle by the medium in which 1t is moving.

ery many times one and the same eXperiment, or, what
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consider many similar systems at cnce which consist o

which at the dinitial time is located in one and the

cal systems forms a statistical ensemble.
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moticn of each individual particle is unpredicta

to predict the rbla*wve number of Brownian particles
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various states) at any succeeding instant of
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ensemble's energy is the sum of the energies of

which constitute the ensemble. The energy is a

of a very large number of particles in the ensemble

ensemble's energy is much smaller than the energy itself. Th

random quantit

the fluctus

partic

at

var

ble,

whick

=

ticlies

FES

=
=

t ¢

of

erefore

L
o

Uit
R

(




vhere E is the ensemble's energy, N is the number of particles in the
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and € is the average energy of a Brownian pariicle. Thus the energy of
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(3.2L) represent, respectively, the average energy, the average

the average moment o¢f the momentum of a quantum particle. The energy

T

le represents, in agreement with what has been stated

7

the average energy of those particles which are found in the vicinity

g multiplied by p, and so forth.

According to our assumptions, the behavior of a qua

dictable. nly a statistical description of its behavior
havior of a statistical ensemble ¢f such particles is

L LK N -
and j &S epresents the average flux o

£ world lines

of the world lines in events space at the point g; therefore the average velocity

¢k
O
;\»
2
p)

cf the ensemble's particles is

Here V_ denoctes regular space. Here and in what follows we will assume the nor-

malization condition (2.12) to be fulfilled. Upon this normalization p(qg)av
represents the probability of detecting a particle in the volume dV: therefore 1?5
the average value < I 2 of the quantity F, which represents a function of the
spatial coordinates 35 is given by the equation
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value of the momentum
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he mean square of the momentum can be defined, assuming that the relation
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occurs., Such an assumption iz natu
act on the particle, but only a stochastic interac

ether). It follows from (4.8) and (4&.L4) that
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in order to define the average value of some funct

q and the momenta Pye The formulated rule is valid for the quantities listed

above: the momenta, energies, and the moment of the momentum and an arkt
P
I £ th ~dinates. i £ E( 7 %) or i - oy
unction of the coordinates, i.e., for Flg’' p) containing p, to no igher thar

o

by no means evident. Essentially formal considera-

tions and not physical ones serve as the basis for such an extrapolation. More-

over, using successively the correspondence principlie [&], it is possible to

arrive at the conclusion that there does not exist a distribution Functiocn over

the coordinates and the momenta simultaneocusly but distribution functions exist

-

only with respect to the coordinates or only with respect to the momenta.
Actually, using the correspondence principle and defining in

EN

order of the operators in the calculation of averages of the

- =

it is then possible to set up a distribution function W (g,p) for the

which appears [4], generally speaking, to be complex and at any rate is not

(L’

tive. The conclusion about the absence of a distributicn function for the coor-
dinates and the momenta follows from this.

to speak about world lines of particles and

quantum mechanics is a statistical ensemble

From cur point of view the fact that the quantum ensemble does not contain /28
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total informaticn about the momenta distribution dcoes not indicate that a

that there simulianeously does not exist a

the DBrownian particles with respect to the mome

Thus a boundedness of the applicability of the co

from our conception.

The principle of the superposition of states in gquantum mechani

linearity of the equations of quantum mechanics are fundamental in

iy
}...!-

nterpretation of quantum mechanics ([1], p. 26). It is not possible to

i

}:.

how one can construct quantum mechanics in the

principle of linear superposition. The entire

In a discussion of gquantum mechanics as a relativistic stati

w

as something accidental and non-fundamental. The method of calculating average

values and the meaning of all the quantities is defined by the concer

emble and dees nd on whether

Thus from our point of view the principle of superposition is not a necessary

feature of gquantum theory. It is

We will now discuss the uncertainty relationship. For a coordinate g

and a momentum P, it can be written in the form




wi

=y
®

5“, 1
IS
[EN
W
ol
-
n
]
<

point of view (4.12) is the mathematical
of the momentum operator ﬁa and the rule (
a common feature of the momentum operator
relatichship (1.1) that they have identical
>, 1In addition it is permissible that they have ident
> for @, B =1, 2, 3. Then the uncertainty relationsi

to the momenta (l.1) of the particles comprising the quantum ensemble. The
assumption is arbitrary and does.not follow directly from our concepticon of
cuantum statistical ensemble.

The uncertainty relationship sta
in a coordinate and the corresponding mome
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if the cocordinate is measured exactly, then the
dictable way. The gquestion of what the momentum "really' is for a specified

dinate is an emptlty one since it cannot be verified by experiment.
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In our conception the uncertainty relationship {(&.12) exists

the measurement process., It is caused by the fact that the energy of a
e ., .~ . ca s AN
ensemble becomes large if one localizes it in a small vol ume \Aq; B .

and Kﬁl
s - N
(k.16

Thus from our point of view the uncertainty
fact that every quantum ensemble, even a stationary one,
his energy is caused by the chaotic motion of t
+h moTe e 1 e hle . al4 3 i ers)
che more strongly the ensemble is localized, the

view of the usual interpretation of quantum mechan

reverse. The uncertainty principle is primary.
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ground state possesses an energy different from zero is consi
festation of the uncertainty principle.

to unnecessary subtleties. In the final
analysis what difference does it make what is considered primary, the uncertainty
principle or the presence of energy in a system in a ground state? In fact
these are associlated phenomena. There is, however, a difference. It appears

when we pass over to the relat

ciple with the correspondence

concept of a statistical ensemble of

relativistic Brownian particles is set as

the foundation. In these two cases we arrive at two different relativistic

theories which, generally speaking, do not agree with one ancther

(l!
e

£
A3




characterist

cbject so that the simultanecus

the ether and therefore have
any particles. 1In this sense the 'thermal motion of the ether' is an chztacle

to exact measurements similar toc how under normal conditions thermal motion

prevents, for example, the exact measurement of the smal
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tic Quantum Ensemble in an Electromagnetic T
States of the Enscmble

We will now discuss a quantum ensemble of particles moving

electromagnetic field. To take into account the interaction of

of the quantum ensemble with the electromagnetic field we add the term
.
j g (m Y
§ g Se ks
G @ -t G i
ey
4
¥
to the Lagrangian (3.2). Here A, is the L-potential of
i
and e s the charge of the particles forming the ensemble. We dencte by 5 |
. G\:‘/

the contribution to the effect which the term L. - . ) ;
B eY gives. Carrying cut cperations

similar to those which were carried out in Section 3, we ocobtain
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them. We ubba~n a single complex equation
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chat the condition
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ensemble a wave funciion V which depends on

conseguently nonstationary. We bear the following in mind. Ve

a soiution of the Bg.(5.14), with the same staticnary A., in the forn ¥ =
-
¥{q,t) with the initial cecndition

wia 0 Py
ﬁ{@,d;m el e
[N ;”B J { 12 je (5.25)
The sclution has the form : /39
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lepends, on the time and comseguentl

it describes a staticnary state, and all physical

Physicists have long ago become accustomed to this

be so.

However, if one reflects on this fact, then it seems strange. > inprassion

i

iz created that the description with the help of a wave functiocn is some artifi-
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description ceases at a certain degree of development of the

reality.

relativistic classical

"Brownian motion" indicates only that the motion of

of an ensemble of particles is determinable. The stochastic nature of

rom our point of view quantum mechanics

theory, the problem of creating a relat

nore simply than is customarily thought.
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